S & DL - Structured Design Language (Proposal)

Zygmunt Ryznar, Cracow (Polen)

:Snchwarte Spez;ﬁkaﬂanssprache struktur:erter "
LEntworf, ergodrsehe Sysi‘eme mhe:tan Struk:une-
T gsmechamsmen '

prache emrten: und mmgte Nutzungsbe:spiele wer-
den vorgesteﬂt Es werden Bezmhungen ‘tie zurn Auf-
Batr komplexer Systeme aus emfaahen Bestandtefi"en

__erforderhch sind, defmfert :

Key Avords spec;f" at:an Ianguage, structured des:gn,
ergamg: sys ms, entrty, g:e.::hamsms of structurmg

p@nenrs are defmed

“Commercial DP is under fire. Users are
becoming increasingly dissatisfied with the
service which their DP departments are
producing. Manpower costs are rising, but
productivity is often static or actually falling:
quality has not improved dramatically...”

J. Rhodes

Introductory remarks

One can risk the statement that the structured design is
getting less successful than it was expected. There have
been formulated good aims, e.g. “making coding, debug-
ging, and modification easier, faster, and less expensive
by reducing complexity” [1], but tools which lead to
wide-spread implementation are practically non-existent.
The reason is that the structured design prefers tech-
niques to methods, and these techniques have not been

526

0013-5704/81/12 0526—08 §$ 02.00/0

correlated with each other. Techniques are centered
mostly on some mechanisms of programming (like
iteration) or data structures or transformations or out-
put or transactions. The theoretical basis for the struc-
tured design is not only a top-down approach, but are
aiso a bottom-up approach, events theory and con-
tingency theory.

If it is assumed that an information system is dedicated
to reflect the object reality, it implies some flexibility
that allows both programs and files to change in ac-
cordance with actual needs of users. To meet this require-
ment, such systems should behave as an ergodic system,
i.e. asystem the evolution of which does not depend on
its initial state. The most desired form of a functioning
computerized information system is evolution by
generation of many incarnations (shadows of primary
form) which cover additional demands. The crucial point
of this solution is how to keep the logically floating
structure of the system providing only some necessary
transfers between components and seeing all raw re-
sources (data and procedures) as common for many
incarnations called problem packages.

Making a change and discovering all effects of it is not
an easy task. In conventional solutions such an activity
is very labour-consuming even in simple cases. A better
way is to have some piece of software called “‘problem
operating system” dealing with the description and
modifications all related components. Each component
has to fit some standards which make possible analysis
and modification. Without these standards and specific
technology of component tuning, we have got concepts
only and practically nothing to be implemented, under-
stood for designers and helpful for users,

Making problem oriented packages may succeed in time
{user’s decision cannot wait) and in quality, if it is sup-
ported by formal notation and software that helps to
describe problems and systems, find components useful
for a given application, tune them upon parameters and
at last assemble them to the form adequate to the user
requirements, languages compilers, DBMS facilities, and
computer operating system demands. The vital part of
the compuier-aided design should be a specification
language easily to use to designers and not too com-
plicated for users. The purpose of that language is de-
creasing the technological gap between changeable needs
of users and rigid computer technology.

Angewandte Informatik 12/81

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

1ne > & DL language is a special-purpose language de-
dicated to describe any component of the system (or
problem) and its relations. Structuring the problem, as a
cognitive activity, may based on top-down approach be
giving smaller parts easily to understand. For complemen-
tary analysis we recommend to use the nonhierarchic
FACT (Functional Analysis Cross Table) method
described in [3] which is useful particularly in manu-
facturing companies and provides overall recognition of
the “‘territory™ of problem in terms of resources and
functions. Problem description is orientated on reflection
of dynamics, expressed in terms of events, actions, and
processes,

Structuring the system differs from a conventional ap-
proach centered on subsystems, functional units, modu-
les, etc. Conventions corresponding to the systems ap-
proach usually consider a system as a combination of
interrelated (but rather static) parts forming the whole,
i.e. having the same or common objectives. In this paper
we prefer a situational approach: we do not define
system and we are describing the problem packages
(instead of systems) created for actual business situa-
tions. Development of computerized information system
is carried out by successive design and implementation
of particular packages that must be relevant to the
management requirements and decision making process.
The basis for such a structured design is some initial
state of system, called pre-system (or “library of possi-
bilities”) consisting of fundamental technological ele-
ments dedicated to serve typical data structures and
operations and built according to rules of structuring.
“Problem operating system” by means of D & L language
deals with modification of elements and links them in

a variety of combinations needed by a problem package.
Structuring programs and data resources is not limited to
hierarchic relations that facilitate the creation of mote
fiexible structures. This solution leads us to a homolo-
gous system, i.e. a system “developed with any control
relationship that does not define a hierarchy of control
responsibility, i.e. non-hierarchical system” [2].

S & DL syntax description

8 & DL (Structured Design Language) consists of two
subsets: the specification language SL and the design
language & DL. SL is a nonalgorithmic language de-
dicated to describe a variety of objects (called entities)
and relations between them. The & DL language is a
highly nonprocedural language dedicated to retrieve
descriptive information, tune components of pre-system,
execute structuring, create interfaces to DBMS and com-
puter operating system. The syntax of & DL has not
been developed yet. It may be partially derived from
special-purpose languages like Metacobol, DML of
CODASYL, QU of CDC, etc. A necessary condition for
implementing & DL is a rather sophisticated DBMS
capable to maintain overlapping and floating relations,
store textual descriptions and procedures as well as
formatted data, process (tune) text of procedures, re-

Al 12/81

trieve all resources listed above by highly nonprocedural
commands and display answer in readable form, etc.

& DL language should provide ab extended macro-
facitity, called Procedure 1uner, for generating versions
(incarnations) of generalized modules the description of
which contains modifiers belonging to secondary entities.
Restrictions and rules of transformation are stored in a
specification of entity MODIFIER (name). An incarna-
tion is set up by the command CREATE INCARNATION
(name FROM (entity-name) USING (list of modifiers’
names and sequence of commands MODIFY concerned
with modification of each modifier.

The main subject of this paper is the SL specification
language. The SL language is applicable on three levels.
Firstly, it can define itself on metadefinition level (see
table 1) setting up patterns for the language analyzer.
Secondly, it is useful on predefinition level to determine
the structure and obligatory phrases within description
of entity type. This facility simplifies very much specifi-
cation for each named entity on the last (third) level of
definition. The basic syntactic unit of SL is a definition
block which contains sentences and clauses. A scope of
the block is determined by DEF and ENDEF delimiters.
In a statement (sentence or clause) there are distinguished
the following lexical atoms: key-words (e.g. entity types)
entity names, attributes, commentaries, delimiters, and
special signs.

bl

A subject of the specification is an entity which repre-
sents a simple or complex object that can be described
and accessed as a relatively independent whole. In terms
of the definition block, an entity that appears directly
after DEF {entity-type) is called a primary entity and
entities which act as attributes are called secondary
entities. The entity can be secondary in many defini-
tion blocks while a simple block can name it primary.
The main description of an entity is associated with the
primary entity, but the usage of it can be specified in
any block. The task for the SL processor (cr DBMS) is
the creation of cross-references and concentration of
descriptive information written in many places of the
specification. A secondary entity that is not defined in
its own definition block can operate as attribute only
and descriptions of it are not gathered by the SL pro-
cessor,

An obligatory description of an entity is entered from
the primary entity definition block DEF {entity-type)
{entity-name). Distributed information about entity
appears in so-called “autonomous blocks™ having format
DEF (block-name) and containing complementary speci-
fications of many entities. Another distributed informa-
tion is located in primary entity blocks on the level of
secondary entities. Owing to this opportunity, entities
can be described successively and some degree of com-
pleteness is needed only if a design command of the
& DL language has to be executed.

The description of entity comprises entity identifiers,
attributes, list of secondary entities, clauses of struc-
turing, and comments. It is possible to individualize the
description even for one occurrence of an entity by the
introduction of an additional identifier called IDKEY

527

Table 1 Metadefinition of the SL language

Entity types in SL language

The list of entity types proposed in the SL specification covers a
variety of entities involved in information system design. These
entities may be grouped into the following classes:

1.

problem class (ACTION, ALGORITHM, ACTIVITY, DECI-
SION, DEPARTMENT, DOCUMENT, PROCESS, EVENT,
FLOW, INTERACTION, LIFE-HISTORY, OBJECTIVE,
PROBLEM, SITUATION, STATE, STREAM, USER);

structuring class (BINDER, CLUSTER, INTERFACE,
INTERSECTION, PART, STRUCTURE, TRACE),

. program resources (MODULE, PACKAGE, PROCEDURE,

PROGRAM, TASKY);

528

. data class (DBASE, FILE, GRANULE,MESSAGE, RECORD,

REPORT, RESPONSE, SET, TABLE, TEXT, VECTOR);

. technology class (BEGIN, ECODE, END, FORM, FOLDER,

MODIFIER, PCODE, QUERY, PARAMETER, POINTER,
RUN, SCHEMA, SUBSCHEMA, SESSION);

. documentation class (DOCUMENTATION, PROJECT,

STANDARDS);

. staff class (ANALYST, PROGRAMMER, DESIGNER);
. tools class {COMPUTER, DBMS, LANGUAGE, OPER-

SYSTEM, DDICT, TOOL);

. undefined objects class (ENTITY).

Al 12/81

and for each version of entity, called INCARNATION,
which became a self-contained entity (independent from
the parent entity). Another advantage of the SL language
is that most of the statements are entity independent,
i.e. they can beused for all types of entity.

There are two basic identifiers of entity: entity type and
entity-name. If entity name means group name (e.g.
record name) then to get a record occurrence the key
(IDKEY)should be supplied. The notation of SL includes
the following conventional signs:

1= determiner of metalanguage statement,
determiner of structural list,
determiner of nonstructural list,

value determiner,

(2 delimiters of nontenminal text in language
definition,
(..) delimiting parentheses of list,
/ alternative usage (or),
/& cumulative usage (‘‘and”” option),
&] optional usage,
obligatory usage (“and™); default sign,
(name) entity name (if appearing after entity type),
(xxx) simple name,
(a,b,c,d) qualified name (first name indicates the
) highest hierarchical element, the last one
means the lowest element) necessary to
identify components of an entity declared
by PART clause,
(x,y,z) list of elements,
x[v) renaming by synonym (both names are valid),
(x;v) renaming by replacement (only the second
name remains valid)
x sign of commentary within a line,
— notational connecting sign ¢used in non-
terminal text),
+) continuation mark at the end of line or at
the end of interrpted text,
(+ continuation mark at the beginning of next
line or at the beginning of second part of text.
Event's Guide-Code
Activity Resources Operation] CE::;:W
- 1 1
% Distributor task module 3
Functions and
processes
Resources
s = F
#
D //] A
! c
sl // \ | 1
T 4 }_/ T
L s \ N\ .
|) -~ __[7 b
B 1
u]]
T
[v]
" f ¢
functional vector alementary data module
Al 12/81

The notational presentation of the SL syntax is shown
in table 1.

Most of the types are not obligatory and can be intro-
duced by the definer in definition blocks. Obligatory
entities are those which are referenced in predefinition
of the SL version (see example N° (). Some entities
should not be predefined. This concerns BEGIN and
END entities which are to be defined in definition
blocks only when they contain additional user informa-
tion (standard BEGIN and END labels need not be
described). Predefinition cannot be used for the un-
defined object class dedicated to additional entities
named after the ENTITY word in the DEF statement.

Another entities, e.g. E CODE and PCODE (event code
and process code), have been introduced to meet the
requirements of the structured design oriented to event-
driven processing (data-driven processing). In this mode
of processing, transactions enter in random sequence and
at random time as records of the “commen” input
stream, containing information events from various
business activities. In order to be correctly recognized
and distributed into data bases they should be equipped
with the “‘guide-code” named ECODE. An examplary
structure of this code is shown in fig. 1. It consists of the
activity code, resource code, operation code, and event
category code. A detailed description of one method
of coding the business events is presented in [3]. This
method is closely related to the cross table mentioned
(FACT). Each information event has to be recognized
by the DISTRIBUTOR task module which establishes
the “territory’ of an event within a data base and in-
vokes procedures necessary to process data located in
input record,

Structural description of the structured entities

The first and most significant feature of the SL language
is a capability to define a variety of structures not
restricted to conventional top-down decomposition. SL
provides expressions necessary to formulate and-store
structured entities that can be specified in bottom-up
manner as well as top-down.

territary of the
. input event

Ingically segmented
data-base record

Fig. 1
Relationships between the FACT
method and data-driven processing

529

As it was mentioned, SL statements dealing with struc-

tures may be located in blocks of the three following types:

a) predefinition block
used for definition of structural dependencies between
entity types (e.g. STRUCTURE, BINDER);

b) primary-entity definition block
dedicated to describe attributes and structures known
at the moment when the entity is set up;

¢) autonomous block
used for complementary definition concerning any
entity in any moment.

There are many structuring facilities provided by SL
language:

1. key-structures (determined by key-words: STRUC-
TURE, BINDER, CLUSTER);

2. intermal structural list
This list is named by the definer directly in the form
(structural-list-name) :; (list of components) or can
be associated with a secondary entity, e.g. DECI-
SIONS :: (list of decisions).
An internal structural list does not imply the creation
of a separate entity for each list, i.e. it has documen-
tary meaning only. A list of components may be
hiezarchically decomposed using brackets, e.g. (uuu)
1 (y{(z, t), a(b, ¢)) which means: entity “uuu’” consists
of parts “y” and ““a”, “y”” consists of “z” and “t”,
parts of “a” are “b” and “‘¢”. A struciural list deter-
mines completeness and precedence of components.

3. internal nonstructural list (lateral one level decomposition)

The naming of this list is made upon the same rules
as for an internal structurat list and the ““:* deter-
miner is used. No entity is created. No hierarchy
and no precedence can be expressed within a list.

Fig 1a An Example of Cross-Tables for a Manufacturing Company

. nested definition block (top down decomposition)

For each definition a block separate entity is creat-
ed. Names of subordinated blocks have been quali-
fied by the SL processor. Completeness and pre-
cedence should be provided in the specification, An
optional entity {block) has to be equipped with an
OPTIONAL attribute, A parallel one should be
mentioned with the PARALLEL TO (entity-identi-
fier? clause.

. piecemeal decomposition

This structuring is used on any level of decomposi-
tion {or for any component) to make additional
fragmentation. For example, it is applied when a
predefined structure is not sufficient for a given
entity, and using PART/PART OF clauses can
provide required depth of decomposition,

. environmental list (bottom-up)

This list specifies elements not being physical com-
ponents of the described entity, but only appearing
in its environment. Te such elements there helong
secondary entities specified in the INVOLVED/IN-
VOLVED IN clause.

. structuring in a space

By means of the LAYOUT statement a sequence of
elements may be specified in terms of space (e.g.
data items in storage).

. operational structure

It is Tecognized by the IPO statement and expresses
operational dependency between input and output.

. logical structure

By use of the RELATED statement there can be
created network data sets (in terms of DBMS) based
on logical relations between records,

[=

7|8l9

FUNCTIONS and 1 2 [10 11 12 13 14 15 16 17 18 19 20 21 22
PROCESSES Short-term planning Realization
e
T 5 zlet § § o |5, Efé%
FEEEgEE) 8| 2|88 |8 |8l 2|8k || Ed|E2 g ez |
cB8EPESd [§ | = |28 |2 | 5[|58 |5 |ce|@F(ef[2F |2

1 Financial assets I

1. Sharg capital

2. Qparating profit

8. Cash i

9. Loans
2 Raw matgrials
3 Components and finished goods
s Work in progress #
6 Power and water -
7 Equipment

1. Manufacturing equipment

2. Transportation equipment

T T —
8 Personnel and tabour s
] intangible assats

1. Patents

2. Capyrights

530 Al 12/81

Table 2 List of entity types

; : OBIECTWE mmp]exobjec;we {op nalentsty‘ usedmproblem :

 descriptiony ¢ . n ‘

. OPERSYSTEM eoniputér Gperating ' _stem under wluch a -

_ #:problem package maybe putinto upera fort 0 L e -
b -QUERY usem quezy“to b 1 o

: :_jPACKAGE pfoblem nsented pack.;g'ie .
= _PARAMETER contmi ata items etuteredm execu _pn iine :

'PART componeat of the exmiyf (eqmpped Wlth qtsahﬁed ﬂame) '

ACTION 10g10a]1y losaeci grmip of Exents:(e. £ Iwewed order -
i e ..

'PRQCEDURE portmn of sofirce ides

tien ar operation; and: oontammg mo
PROGRAM éxecutable program whi ;
" PROGRAMMER "peison being the uthm of prggra_m resuurces N
¢ prégrammer’s descnptmn indludes kmwledge dnd experietice; *
- thevital part of wh:ch isa list ofprogram e GUrces deveroped
- by iumse]f

' PROJECT culte m:mn o analyms and de,s;ga documﬁntailesns =

"% RECBRD ¢omponentiof the file, data portion consitiered
: whole by READ o WRITE mstf ctions «

« .- - REFORT batch autpuf, 2
: '__"RES;’QHSE mteractzve utput)
“REN gxecutio of 3 program * -
SCHEMA datd base sehema, © { | :
: SESSIOI\E batch of Iogca]iy closed pm‘imﬂ of D) L stzie;ments :
-~ . BET logigal éoHectlor; oi’ xalm:ed reaor&s :
2 SITUATI{)I

a

STATE istatg of a gwen ertit]
= se.'patate egti‘ty) :

m,la,&ed toz g:ven enttiiﬁ’ T
MESSAGE sfm:rt output mftarmatid

"ROBOT)

Al 12/81 531

10.

il.

12

13.

14,

15.

The

precedence relation

This relation is used to set up a conirol structure
that can be different from the physical decomnposi-
tion, The PRECEDENCE OF statement may act
also as a complementary clause to a nonstructural
list.

origin relation

1t indicates the primary source of element by use of
the DERIVED FROM statement or the actual source

(CONTAINED IN statements).

trace relation (cross-reference)

A tracing information is kept in the TRACE entity.
1t includes a list of all entities related to a given
entity (named after TRACE word) or contains a
collection of structural lists, sets, etc. which pass
through the entity, Cross-references are to be main-
tained automatically for entities having the TRACE
definition block and printed upon EXIBIT TRACE
statement in & DL language.

overlapped structures (“common territory”)

In the definition block of an INTERSECTION
entity there are listed structures which are under
control.

structural inversion

Conversions top-down into bottom-p (and vice
versa) are made by using information stored in
TRACE and INTERSECTION entities. It facilitates
navigation through complex structures.

time relation

A structuring in time is provided by STATE, SITUA-

TION, HISTORY-LIFE entities (related to PROB-
LEM, ACTIVITY, PROCESS, ACTION, FILE,

RECORD) and STREAM, FLOW entities (related to

EVENT). Temporary links may be declared in
RELATED statements,

ways of structuring discussed above are focused on

reflection of a natural flow of events happening in the

real world, and an expression of changeable relationships

between entities.

Examples of entity types description

Due to limited volume of this paper, only descriptions of

some entity types have been presented.

Example N° 0. Predefinition of the language

BEGIN {name}
DEFSL {version-name)

532

DEF PROBLEM

STRUCTURE :: (ACTIVITY (PROCESS (ACTION

(EVENT))))

SECONDARY ENTITIES INVOLVED: DEPART-
MENT, ANALYST, USER, ALGORITHM, DECI-
SION, OBJECTIVE, TOOL, DOCUMENTATION)

ATTRIBUTES: (REQUIREMENTS, CLASS, DE-
FINER)

ENDEF
DEF PROCESS

PROCESS/ACTION :: (TRIGGER, ..., TERMINAL)

SECONDARY ENTITIES INVOLVED: (PCODE,
EVENT, ECODE)

OBLIGATORY RELATIONS: (PRECEDENCE, IPO)
ENDEF
DEF PROGRAM
STRUCTURE :: (MODULE (PROCEDURE})
OBLIGATORY ATTRIBUTES: (LANGUAGE, COM+)
(+PILER, OVER-SYSTEM, COMPUTER, PRO¥)
(+GRAMMER)
OBLIGATORY RELATIONS: (PRECEDENCE-OF-
PARAMETERS, PRECEDENCE-OF-MODULES)
ENDEF
DEF SET
OBLIGATORY ATTRIBUTES: (TYPE, DBASE,
DBMS)
OBLIGATORY RELATIONS: RELATED
ENDEF
DEF ECODE
STRUCTURE :: (ACTIVITY-CODE, RESOURCES-
CODE, OPERATION-CODE, EVENT-CA+)
(+ TEGORY-CODE)
NOTE = components of the STRUCTURE OF ECODE
should be specified as names after ENTITY word
in definition blocks
OBLIGATORY RELATIONS: LAYOUT location in
EVENT
ENDEF

ENDEFSEL
END

Example N° 1. Problem definition

DEF1 PROBLEM (name}

[FNAME = full name of the problem]

DEFINER = analyst’s name

CLASS = classification code of the problem

PRIORITY = priority code within the class

REQUIREMENTS = specific requirements of the problem
have to be considered in information system design)

DEPARTMENTS INVOLVED: list of departments involved
in the problem

ANALYSTS INVOLVED: list of problem analysts

USERS INVOLVED: iist of users

ALGORITHMS INVOLVED: list of algorithms

ATTRIBUTES: hst of attributes defined by the user or de-
finer

TOOLS INVOLVED: list of tools used in problem analysis

DECISIONS: (list of decisions)

OBJECTIVES: (list of objectives)

DOCUMENTATION = name of documentation containing
results of analysis

ACTIVITIES :: (aaal, aaa2, aaa3, ..., aaan)

DEF 2 ACTIVITY (aaal)

... attributes of activity

PARTS :: (bbbl, bbb2, bbb3, ..., bbbn)
DEF 3 (bbbl)

ENDEF 3
DEF 3 (bbb2)

PROCESSES OF (bbb2) :: {cc21, cc22, ..., cc2n)
NOTE = relation {entity-type) OF ((entity-name)}
should be interpreted according to the statement
STRUCTURE in DEF PROBLEM -~ see the
example N°
ACTIONS OF {cc21) :: (d211,4d212, ..., d21n)
EVENTS OF (d211) :: (ecel, ece2, ..., ecen)
ENDEF 3
ENDEF 2
DEF 2 ACTIVITY (aaa2)

ENFEF 2
ENDEF 1

Al 12/81

caliing procedures

INPUTMSK, i
AENEARND

INTERFACE

CASE input mask

—5!

1

[ENTRYMSK 3 entry mask

IRE

[2

——

Fig 2 Complex Procedure Scheme

INTERFACE

AEAEEENE
i
STOP @ called procedures

Example N° 2. Program definition
DEF1 PROGRAM (name)
LANGUAGE = name
COMPILER = name

2]
[
w
'y
B
Q
=
5 (o] (]
5| | [y poncs iy i
- ey o

o T —r e —— T
3| ——=% e e
8= [S —

———

i F —
% entry-point-33 L
;)

b —. i R _)(7
=== B s diti
H =
B

S

e |
QUTPTVSK autput mask

PROGRAMMER :: (chief-programmer-name (programmer-

name))

COMPUTER = name

OVER-SYSTEM = {operating-system-namel/operating-
system-name?)

INVOLVED IN PACKAGE: (list of packages where this
program is used)

PRECEDENCE OF PARAMETERS: (list of parameters)

PRECEDENCE OF MODULES: (list of modules)

DEF 2 MODULE (name)

DEF 3 PROCEDURE {(name)
MODIFIERS: (list of modifiers)}

ENDEF 3

INPUT (name} DERIVED FROM/CONTAINED IN
(name)

OPERATION (name) USING (tool-name)

OUTPUT (name) DIRECTED TO (name)

ENDEF 2
ENDEF 1

Concluding remarks

The specification language discussed here is to be con-
sidered as part of the specific structured design metho-
dology dealing not only with “well” (hierarchically)
structured problems and systems built under a long-
term schedule of integration. A real canse for com-
puterisation should be the actual business situation
(there must be a man who wants information for deci-
sions). The basis for such a structured design is some
initial state of system, called pre-system, containing
fundamental technological elements built according to
the rules that enable the use of them in many problem

Al 12/81

packages. In this context special attention should be
paid to modifiers, because they are the bottle-neck in
making adaptive programs. There is a need to de-

velop a specific technique to help programmers in
writing so-called skeleton programs that have stand-
ardized control flow and are equipped with many
modifiers (see fig. 2), which have to be processed by the
tuner. The tuner may perform the following operations:
insertion of data names and data values, renaming and
redefining data, setting up the case (the input mask), re-
naming entry points, generation of CALL statements,
generation of empty modules (driver or stub type),
setting up interfaces between languages, insertions of
expressions, invoking schemas or subschemas, etc. the
final conclusion is that the proposed S & DL language
seems to be a good initiative to improve the structured
design centered on events, processes, and problems.

References
(1] Stevens, W. P., Meyers, G. J., Constantine, L. L.: Struc-
tured design. IBM Syst. Journal 2/1974

Yourdon, E., Constantine, L. L.: Structured design.
Prentice Hall, 1979

Ryznar, Z.. A conceptual model of an interfunctional
data base system. Information and Management 2/78
Couger, J. D., Knapp, R. W. (edit.): System Analysis
Techniques. J. Wiley & Sons, 1974

Wedekind, H.: On the parametric specification of data
base oriented information system. Management Data-
matics 5/76

A progress report on the activities of the CODASYL end
user facility task group. Management Datamatics 5/76

(2
[31]
(4]

[5]

16]

Zweiteingang am 27.4.1981

533

